# -------------------------------------------- # CITATION file created with {cffr} R package # See also: https://docs.ropensci.org/cffr/ # -------------------------------------------- cff-version: 1.2.0 message: 'To cite package "KRLS" in publications use:' type: software license: GPL-2.0-or-later title: 'KRLS: Kernel-Based Regularized Least Squares' version: 1.0-0 doi: 10.18637/jss.v079.i03 identifiers: - type: doi value: 10.32614/CRAN.package.KRLS - type: url value: https://www.stanford.edu/~jhain/ abstract: Package implements Kernel-based Regularized Least Squares (KRLS), a machine learning method to fit multidimensional functions y=f(x) for regression and classification problems without relying on linearity or additivity assumptions. KRLS finds the best fitting function by minimizing the squared loss of a Tikhonov regularization problem, using Gaussian kernels as radial basis functions. For further details see Hainmueller and Hazlett (2014). authors: - family-names: Hainmueller given-names: Jens email: jhain@stanford.edu preferred-citation: type: article title: Kernel-Based Regularized Least Squares in R (KRLS) and Stata (krls) authors: - family-names: Ferwerda given-names: Jeremy - family-names: Hainmueller given-names: Jens email: jhain@stanford.edu - family-names: Hazlett given-names: Chad J. journal: Journal of Statistical Software year: '2017' volume: '79' issue: '3' doi: 10.18637/jss.v079.i03 start: '1' end: '26' repository: https://j-hai.r-universe.dev commit: 9ee4980f0f951956294c84b7f49fe4374e5a432b url: https://www.r-project.org date-released: '2017-07-08' contact: - family-names: Hainmueller given-names: Jens email: jhain@stanford.edu